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Abstract Cloud providers and data centers rely heavily on

forecasts to accurately predict future workload. This

information helps them in appropriate virtualization and

cost-effective provisioning of the infrastructure. The

accuracy of a forecast greatly depends upon the merit of

performance data fed to the underlying algorithms. One of

the fundamental problems faced by analysts in preparing

data for use in forecasting is the timely identification of

data discontinuities. A discontinuity is an abrupt change in

a time-series pattern of a performance counter that persists

but does not recur. Analysts need to identify discontinuities

in performance data so that they can (a) remove the dis-

continuities from the data before building a forecast model

and (b) retrain an existing forecast model on the perfor-

mance data from the point in time where a discontinuity

occurred. There exist several approaches and tools to help

analysts identify anomalies in performance data. However,

there exists no automated approach to assist data center

operators in detecting discontinuities. In this paper, we

present and evaluate our proposed approach to help data

center analysts and cloud providers automatically detect

discontinuities. A case study on the performance data

obtained from a large cloud provider and performance tests

conducted using an open source benchmark system show

that our proposed approach provides on average precision

of 84 % and recall 88 %. The approach does not require

any domain knowledge to operate.

Keywords Forecast � Datacentre � Anomaly �
Discontinuity

1 Introduction

To effectively run a data center, appropriate virtualization

and cost-effective provisioning of the infrastructure, with

respect to the type and size of the service requests (i.e., the

workload), needs to be implemented. Overestimating the

necessary infrastructure for a set of requested services in a

specified period leads to waste, under-utilization, and

increased costs. However, under-estimation of the future

workload is also unacceptable, since it degrades the quality of

the service and may lead to violations of client Service-Level

Agreements (SLAs). To ensure SLAs are met, while mini-

mizing infrastructure costs, data center operators need to

know ahead of time, (i.e., short and long-term forecasts) the

expected workload. The aim of the short-term forecast is to

provide accurate predictions of workloads in the near future,

e.g., 1 or 2 h ahead, usually based on a week to a month of

the data center’s recent performance history. The data center

operators use the short-term forecasting for dynamic provi-

sioning and placement of tasks in a data center, especially for

load balancing to avoid performance bottlenecks. Accurate

short-term forecasting permits near-optimal provisioning,

thus improving usage of the available infrastructure.

Long-term forecasting of the workload is necessary for

capacity planning to ensure that the cloud infrastructure

supports the growth and evolution of client requirements.

To capture the seasonality patterns, long-term forecasting

requires the use of at least a year of recent performance
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history from one or more data centers to predict expected

workloads. The accuracy of forecasting results depends on

the quality of the performance data (i.e., performance

counters; such as CPU utilization, bandwidth consumption,

network traffic and Disk IOPS) fed to the forecasting

algorithms. Initial data cleanup involves missing value

imputation, calculating and adjusting times stamp drifts of

logged performance data across hundreds of VMs, identi-

fication and removal of outliers and anomalies and in some

cases, scaling and standardizing the data to remove bias

among performance counters. In a typical cloud environ-

ment, a large number of elements (i.e., VMs, routers,

chillers and sensors) continuously generate large traces of

performance data (terabytes (TB) in size) further compli-

cating the data preparation step. Hence, practitioners and

data scientists spend considerable time [e.g., up to 80 %

(Dasu and Johnson 2003] in preparing data for their fore-

cast algorithms. One of the fundamental problems faced by

analysts in preparing data for long-term forecast is the

identification and removal of data discontinuities. To date,

there does not exist any automated approach to assist data

center operators in detecting discontinuities in the perfor-

mance data. Data discontinuity is a special kind of anomaly

that differs from behavioral and environmental anomalies,

and must be addressed before making a forecast. A

behavioral anomaly is an inconsistent behavior, when

systems have been provisioned identically are receiving

similar traffic (i.e., though a load balancer). An environ-

mental anomaly results from lack of uniformity between

the servers in a data center (usually over time). For

example, even when the system is identically provisioned,

drift often happens during the course of normal operations

(Rigatos and Siano 2013; Langin and Rahimi 2010; Meng

and Jian 2016). A discontinuity is an abrupt change in a

time-series pattern that persists but does not reoccur, as

shown in Fig. 1. Examples include (a) a significant change

in a counter’s value (b) a significant change in the slope

(rate of change) of the counter’s value, (c) a significant

change in a cycle or amplitude or both. Discontinuities

such as those shown in Fig. 1 do not occur instantaneously,

but over a brief period called a transition period. If an

analyst recognizes that a discontinuity has occurred, they

may want to ignore the early data and base their forecast on

the measurements taken after the discontinuity. Moreover,

detecting a discontinuity provide an analyst a reference

point to retrain their forecasting models and make neces-

sary adjustments. Therefore, analysts require automated

techniques that can identify discontinuities among thou-

sands of performance counters collected across hundreds of

machines. Such techniques should be intelligent enough to

distinguish discontinuities from anomalous data that should

be ignored within input data, such as irregularities in which

a few individual performance counter values deviate sig-

nificantly from the general pattern but do not persist. These

include (a) seasonal variations and recurring patterns that

should be accommodated such as workload volumes that

decrease each weekend but return to normal on Monday

and observed growth that should be suitably anticipated

(b) recurring patterns such as exponential growth of

workload, i.e., where the slope of counter(s) changes

smoothly—though perhaps rapidly—with time.

1.1 Contribution of the paper

We identify the main contributions of this paper as:

1. We provide an overview of the entire forecasting

process for a typical data center.

2. We provide an accurate and novel approach for

identifying discontinuities in performance data.

3. To our knowledge, this is the largest study to date for

detecting discontinuities; we use performance data

from 5000 machines over a span of seven years.

4. We empirically evaluated our proposed approach on

both the data obtained from a large cloud service

provider and performance experiments conducted

using an open-source benchmark system. We show

that our proposed approach can achieve up to 84 %

average precision and 88 % average recall.

1.2 Organization of the paper

The remainder of the paper is organized as follow. We

describe a typical forecasting process in Sect. 2. We then

present our proposed approach in Sect. 3, followed by a

case study setup along with case study findings in Sect. 4.

We detail related work in Sect. 5. Finally, we summarize

our work and sketch possible future research in Sect. 6.

(c) 

Transition 
Period 

(d) (b)(a) (e)

Fig. 1 Examples of discontinuities in performance counter
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2 Steps involved in forecasting

We detail the steps involved in a typical forecasting pro-

cess for an enterprise as shown in the Fig. 2.

Determine purpose Initially a department, team or a

stockholder requests forecasting. Usually, a dedicated

group or team of analysts are responsible for handling the

forecast requisition. The analysts gather preliminary

information from the requestor, i.e., a) forecast purpose

(e.g., operations are interested to know expected workload

volume on a daily to weekly basis for load balancing and

dynamic placement of machines, whereas, marketing and

sales are more concerned about growth in customers,

planning workforce levels, scheduling and purchases) and

b) a time horizon for a forecast (e.g., seconds, hours, days,

months, quarters or years).

Technique selection Based on determining the forecast

horizon and the purpose of the requestor, the analyst selects

an appropriate technique (e.g., moving averages with

exponential smoothing for short-term forecasts and trend

equations for long-term forecasts). Often, the analyst uses

more than one forecasting technique to obtain independent

forecasts. If selected techniques produce approximately the

same precision, this gives increased confidence in the

results; disagreement among forecast indicates that ana-

lysts need to revisit the technique.

Data preparation This is the most important and expensive

step and challenging for analysts. Poor forecasts can result

from inadequate data preparation. In this step, analysts

sanitize and pre-process the data to make it suitable for the

forecasting techniques selected in the previous step. During

sanitation missing, ignorable, erroneous and empty per-

formance counter variables are treated (Bondi 2007; Malik

et al. 2010a, b, c; Jiang 2010; Foo et al. 2010). Time

periods across different metrics may also need to be har-

monized. Counter data is missing when a performance

monitor fails to record an instance of a performance

counter. A counter is empty when a resource cannot start

the require service. Analysts then pre-process the data

using custom programs to aggregate performance counters

across several subsystems of a data center, producing

derived customer-perceived counters (Bondi 2007) such as

transaction response time, latency, user wait time, and

perceived throughput. These values capture the user

interaction with their system as their transaction/request/

job flows through the various subsystems in a data center.

Pre-processing also involves formatting the data as

required by the selected forecast techniques. Analysts may

all extrapolate, scale and standardize data when

appropriate.

Prepare forecast In this step, the analyst uses prepared time

series training data and the selected forecast technique to

create a forecast model without either under-fitting or over-

fitting. They seek results with minimal residues, i.e., pre-

dicted values are close to the actual time series value.

Analyst adjust the parameters of the forecast techniques

several times to find the best form of the model that sat-

isfies the requestor’s forecast objective.

Monitor forecast This step is composed of two substeps;

active and passive monitoring of the forecasts. In active

monitoring, an analyst validates a forecast for a predeter-

mined period before it is deployed in production or the

model is handed over to the requester. The analyst verifies

assumptions, compares the forecasted values (transaction

volume, workload, or resource utilization of machines) to

the actual observed values as they occur in the data center,

and identify any external or internal event that affects the

results of the forecast. Once the forecasting model is

communicated to the requestor, passive monitoring process

starts. A recurring monitoring checkpoint for the forecast is

established (i.e., monthly, quarterly or every 6 months) to

look for any evidence of significant variance between the

actual and predicted results; to identify deviation factors

such as discontinuities. Any variance greater than some

threshold is investigated and the forecast model either

adjusted to accommodate the variance or retrained to

accommodate the discontinuity.

3 Proposed approach

In this section, we present our proposal to assist in the

challenges discussed in the previous section. Figure 3

shows the major steps of our proposed approach. We detail

the steps as follows:

(A) Data preparation

The performance logs obtained from the production

environment (i.e., data center) do not suffice for

direct analysis by our approach. Performance logs

need to be filtered from noise, i.e., missing counter

data or empty counter variables. To deal with this

kind of problem (incomplete data), we employed

list-wise deletion. If the ith observation for a counter

‘T’ is missing, list-wise deletion will delete the

Determine 
Purpose 

Technique 
Selection 

Data 
Preparation 

Prepare 
Forecast 

Monitor 
Forecast 

Feedback Loop 

Fig. 2 Steps involved in a

typical forecasting process
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corresponding ith observation of all the counter

variables. Partial empty counter variables and coun-

ter variables that have more than 2 % of the missing

data are automatically removed during the sanitiza-

tion process. The logs also need to be prepared to

make them suitable for the statistical technique

employed by our approach, i.e., Principal Compo-

nent Analysis (PCA). PCA is a maximum variance

projection method (Jolliffe 2002). Performance

counters have different ranges of numerical values;

they have different variance. PCA identifies those

variables that have a large data spread (variance),

ignoring variables with low variance. To eliminate

PCA bias towards those variables with a larger

variance, we standardized the performance counters

via Unit Variance scaling, i.e., by dividing the

observations of each counter variable by the vari-

able’s standard deviation. Each scaled variable then

has an equal (unit) variance, i.e., each variable has a

mean of 0 and Standard deviation of 1. Scaled

performance counter data are then further mean-

centered to reduce the risk of collinearity. With

mean-centering, the average value of each perfor-

mance counter variable is calculated then subtracted

from its respective counter data listed in Fig. 4.

(B) Performance counter selection

The performance logs obtained from the production

environment consists of thousands of performance

counters. Many of the performance counters are

either invariants such as ‘Component Uptime’,

‘Component Last Failure’ or are configuration

constants, such as ‘No of DB Connections

Allowed’’, ‘Message Queue Length’ and ‘Total

Component Memory’. These counters captures little

variance and the values of such performance coun-

ters seldom change or correlate to dependent vari-

able such as workload volume. These variables are

of little help to analysts in detecting discontinuities.

For example, Fig. 5 shows a few of the performance

counters for one of the CPU-intensive performance

test experiments conducted (explained in Sect. 4).

During the course of the performance test, a few

Data 
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      Metric 
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(PCA) 

Anomaly 
Detection

Performance 
Logs 

Report 
(Discontinuities)

Discontinuity 
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(Distribution comparison) 
(Effect size)

Fig. 3 The steps involved in the proposed approach
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Fig. 5 Performance counters reflecting injected anomalies and discontinuities. X axis: time; Y axis: resource utilization; filled square anomaly;

empty triangle discontinuity
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anomalies and discontinuities are injected and per-

formance counters across the testbed are captured in

a performance log. Among them, Fig. 5a is a plot of

a webserver’s ‘CPU utilization’ counter that does

reflect all the injected anomalies (marked with

circles in the figure) and discontinuities (marked

with triangles). Whereas, the values of the database

servers % CPU utilization’ performance counter

shown in Fig. 5b shows the injected anomalies, but

injected discontinuities are not clearly visible. Fig-

ure 5c is ‘Disk idle time’ counter of a database

server. Its values neither react to any injected

anomaly nor do the values reflect the injected

discontinuities. Figure 5d is ‘User’s thread pool’

performance counter for the load generator and is a

semi-invariant, i.e., its values only change during the

course of performance test, when the workload

intensity is increased or decreased. The counter is

able to capture the injected discontinuity, but will

fail to capture other types of discontinuities arising

due to the changes made to the infrastructure.

Moreover, the counter fails to capture any injected

anomaly. A naı̈ve way is to apply our proposed

discontinuity identification technique across all the

performance counters. However, using the tech-

niques on all the counters will also increase detection

of false positive discontinuities (such as the result

shown in Fig. 6b, c for applying the technique on %

CPU Utilization’ and ‘Disk Idle Time’ counters) to

analysts, thereby wasting their time in inspecting

them. We use a robust and scalable statistical

technique i.e., Principal Component Analysis

(PCA) (Jolliffe 2002) to identify a few of the

performance counter that capture the maximum

variation of the collected data and have the potential

to capture discontinuities in their time series counter

values. We choose PCA due to (a) our previous

success in using it with performance data of a large-

scale system and (b) its superior performance in

identifying performance counters that are sensitive

to minute changes in both workload and environ-

ment as compared to many other supervised and

unsupervised machine learning techniques (Malik

et al. 2013). We provide an overview of the PCA

based performance counter selection technique in

this paper. Further details are discussed in our

previous work (Malik et al. 2010a, b, c). Basically,

the high level goal of using PCA in our context is the

same as using clustering: selecting the least corre-

lated subset of performance counters that can still

explain the maximum variations in the data, thereby

eliminating performance counters capturing little

variance such as invariants and configurations

related performance counters. The performance

counters identified by PCA approach are potentially

good candidates for detecting any occurring discon-

tinuities. These performance counters are fed into the

next step of our approach to first detect the presence

of anomalies and then to identify discontinuities

among them, if any exist.

3.1 Anomaly detection

Any attempt to identify what constitutes anomalous data

encounters both the difficulty of trying to categorize a very

diverse set of unexpected patterns in data according to one

or more common characteristics and the difficulty of

choosing thresholds that realistically differentiate between

normal variance in legitimate data, and unexpected

potentially anomalous patterns in that same data. Border-

line cases may be somewhat arbitrarily labeled as either

anomalous, or not anomalous, with such arbitrary labeling

potentially having a significant impact on subsequent

prediction.

Some algorithms, such as regression, attempt to predict

future results from only data seen to date while others (such

as Fast Fourier Transform analysis) (Davis et al.

2012, 2013) seek patterns within training data, so as to

predict future results. When seeking to detect anomalies in

recent performance data for which future performance data

is currently unavailable, we are unable to distinguish

between a temporary anomaly and a longer-term disconti-

nuity. However, we can track the running mean and
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Fig. 6 Anomalies detected by our proposed approach. X-axis: time; Y-axis: cost
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variance within the observed data, and presume that

observed values exceeding some multiple of the variance

from the mean, or recent windowed data failing the t test is

anomalous.

When working with training data, we discover discon-

tinuities by presuming that discontinuities cannot be well

modeled by a low order polynomial function. Given a

performance counter time series data v t½ �f g, we approxi-

mate the series by the quadratic function f tð Þ ¼ cþ bt þ
at2 that minimizes the least squared error (LSE). We pre-

sume that series containing sudden dramatic changes,

anomalies, or discontinuities will not be fit as well by this

approximation and so have a larger LSE. To discover

exactly where difficulties arise in fitting this model to the

performance counter data, we begin by modeling the per-

formance counters n data points as n consecutive quadratics

fi having coefficients fc ¼ v ti½ �; a ¼ b ¼ 0g and conse-

quently LSE = 0. A greedy algorithm selectively replaces

pairs of consecutive quadratics modeling adjacent data by a

single quadratic until our performance counter time series is

modeled by a single quadratic. At each step selection is

chosen so that the increase in the total LSE is minimized.

Replacements with the same increase in LSE are chosen by

giving priority to those new quadratics having smaller |ai|,

then |bi|, and then if necessary modelling shorter subse-

quences. At each step the two data points that cease to be at

the end of a subsequence when subsequences are merged

have a cost associated with them. This cost is simply the

total increase in the LSE of the subsequence they formally

belonged to when this subsequence is modeled by a quad-

ratic spanning the longer now combined pair of subse-

quences. Costs can be standardized (having mean l = 0,

and variance r2 = 1) if cost on different inputs must be

comparable. Cost reflects the poor fit when unifying con-

secutive subsequences at a point under a common quadratic

model. Since the total LSE is related to the length of the

subsequence unified, cost is also influenced by the reluc-

tance of our greedy algorithm to undertake early unification

at a point. Largest costs thus suggest positions where the

most egregious anomalies/discontinuities occur as shown in

(c, b). Using dynamic programming optimal quadratic

coefficients can be computed at each step in constant time.

Since
Pn�1

i¼1 i ¼ ðn2 � nÞ=2 quadratics are computed, and

following each computation a total LSE is then calculated

on typically far fewer than n values, the algorithm runs in at

worst O(n3). Biggest problem with this algorithm is

detecting and coping with singularities when computing

quadratic coefficients. Internally 128 bit doubles are used;

and decrease in LSE (which should never in theory happen)

used to detect floating point error.

The linear fit is preferred whenever (as consequence of

such error) it has a smaller LSE. We illustrate the anomaly

detection approach using six data points, as an example.

The six data points (1, 3, 2, 7, 8 and 7) are shown as

triangles in Fig. 4. The optimal pair of quadratics that fit

this data is shown via dotted black line in Fig. 4. Since

these two quadratics fit the data exactly, the LSE associated

with all data points is zero. The LSE for each of the six data

point is show in the top left corner of the Fig. 4. Simply,

the best fit in the least-squares sense, minimizes the sum of

squared residuals, a residual being the difference between

an observed value (shown by triangles) and the fitted value

(corresponding data points on the solid black line). In

Fig. 4, at time interval 1, the observed data point (marked

as a triangle) has a value ‘3’, along y axis. Whereas, for the

same time interval, the value of the data point falling on to

the solid black line has a value of ‘2.6’. The LSE is cal-

culated as the square of the difference between observed

value and actual value, hence is ‘0.154292’. When the

number of quadratics permitted is now reduced to one, the

optimal fit is shown as solid black line. The total LSE is

now 9.036, with 5.382 of this increase associated with

approximating the first quadratic, and 3.553 the second.

Since the data points at time 2 and 3 are not now at the

terminal points of the quadratic modelling them they are

assigned these corresponding increases in the LSE cost, as

their costs. These higher cost values are show via grey line

with circle head and represent anomalous data points.

3.2 Discontinuity identification

This step of our methodology filters out discontinuities

among all anomalies identified by the previous step of our

approach and is composed of the following sub-steps:

3.2.1 Distribution comparison

After the anomaly transition period has passed, the value of

the performance counters returns back to its equilibrium

state, i.e., stable state with respect to the workload. In the

event of a discontinuity, the increase or decrease in the

value of a performance counter persists after the transition

period t as shown in Fig. 1a, b. This sub-step of our

approach compares the distribution of a performance

counter before and after the anomaly transition period. We

use Wilcoxon rank-sum test (Wilcoxon 1945) to compare

the two distributions. We choose this test because it is non-

parametric and does not require the data to be normally

distributed. We conducted Shapiro–Wilk test of normality

to confirm that our data obtained from both industrial and

an open source system (discussed in Sect. 4) is not nor-

mally distributed. Wilcoxon rank-sum test at the signifi-

cance level of 1 % (i.e., 0.01), q-value\0.001 indicates

that the null hypothesis (H0) (i.e., the two distributions are
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same) is rejected; we can conclude the presence of a

discontinuity.

3.2.2 The effect size for measuring discontinuity

When an anomaly transition period is long, i.e., spans over

a few weeks (e.g., slow diffusion of a memory leak), to a

month (when a recently added feature is removed or a

hotfix is rolled back when a corresponding patch is ready),

the value of performance counter will return to the equi-

librium state reflecting the normal behavior of the system

under corresponding load. However, there will be slight

differences between the counter distribution before and

after the long transition period either due to carry-over

effect of an anomaly or due to counter extrapolation rate,

such as monthly growth in workload volume and CPU

consumption. In practice, analysts do not consider such a

minute difference between the distribution as a disconnect,

despite the difference being statistically significant. We

measure the effect sizes of the difference in the distribution

of performance counter values before and after an anomaly,

in order to confirm discontinuities. Unlike the Wilcoxon

rank-sum test, which only indicates if the difference of the

mean between two populations are statically significant,

effect size quantifies the difference between two popula-

tions. Research has shown that reporting only the statistical

significance may lead to erroneous results (Kampenes et al.

2007) (i.e., if the sample size is very large, p-value can be

small even if the difference is trivial). We use Cohen’s d to

quantify the effect (Kampenes et al. 2007). Cohen’s d

measure the effect size statically, and had been used in

prior engineering studies (Kitchenham et al. 2002; Kamp-

enes et al. 2007). Cohen’s d is defined as:

Cohen0sd ¼ �x1 � �x2
s

ð1Þ

where �x1 and �x2 are the means of two populations, and s is

the pooled standard deviation (Hartung et al. 2011). The

strength of the effects and the corresponding ranges of

Cohen’s d value are (Cohen 2013):

effectsize ¼

trivial if Cohen0s d� 0:2

small if 0:2\Cohen0s d� 0:5

medium if 0:5\Cohen0s d� 0:8

large if 0:8\Cohen0s d

8
>>><

>>>:

Effect size acts as a tunable threshold to reduce false

positive identification of discontinuity by our approach.

Analysts (based on their domain trends and required

granularity to train their forecast models) can set the effect

size beyond which (despite being statistically significant),

the differences between a performance counter’s

distribution (before and after the anomaly transition per-

iod), is not considered as discontinuity.

4 Case study

The main goal of this case study is to investigate the

effectiveness of our proposed approach for identifying

discontinuities in performance data.

RQ 1. How effective is our approach in identifying

discontinuities in performance data?

Motivation A methodology with low recall won’t be

adopted in practice since it fails to identify many of the

existing discontinuities in performance data. An approach

that produces results with high recall and low precision is

not useful either since it floods the performance analysts

with too many false positives. An ideal approach should

identify minimal and correct set of discontinuities in per-

formance data. We evaluated the performance of our

approach using precision, recall and F-measure.

4.1 Subject of study and environmental setup

In this section, we list and describe the environment setup

for these systems.

1. The industrial system: A data center provided us with

the production performance logs of their data center

spanning over terabytes (TB). The log contained a

wealth of performance counters obtained from 5500

grids hosting 279 companies over the period of 7 years.

The peak number of servers running across grids in any

one hour is 12,088. Maximum CPUs on a server is 32.

2. The open source system: The second system under study

is Dell DVD Store (DS2) application (Jaffe and

Muirhead 2005), which is an open source prototype of

an online e-commerce website. It is designed for

benchmarking Dell hardware. It includes basic ecom-

merce functionalities such as user registrations, user

login, product search and purchase. DS2 consists of a

back-end database component, a web application com-

ponent, and a driver program (load generator). DS2 has

multiple distributions to support different languages

such as PHP, JSP, and ASP and databases such as

MySQL, Microsoft SQL server, and Oracle. In this case

study, we use the JSP distribution and a MySQL

database(s). The JSP code runs in a Tomcat container.

Our load consists of a mix of transactions, including

user registration, product search and purchases. The

configuration of our DS2 load generator for the baseline

performance load in our experiments is listed in Table 1

to enable the replication of our experiments.
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3. Simulation Practitioner of the data center provided us

with an excel sheet that had synthetic data (representation

of a performance log) along with manufactured discon-

tinuities generated using statistical equations and formu-

las. However, they did not communicate the occurrence

of manufactured discontinuities in the data to us.

4.2 Fault injection

To study our approach on realistic situations, we must

evaluate them in the presence of representative faults (i.e.,

anomalies and discontinuities). To do so, we first need to

choose the category of faults, e.g., software failures,

hardware failures and operator/human errors. Pertet and

Narasimhan (2012) performed a study on performance

degradation and failure occurrences in an enterprise web

service system and concluded that 80 % of the perfor-

mance anomalies in large software systems are due to

software inconsistencies and human errors. Therefore, in

this paper, we injected anomalies and discontinuities from

these two categories. Table 2 lists the different anomalies

and discontinuities for our performance test experiments.

Below, we explain the rationale of choosing the anomalies

and discontinuities for our experiments.

4.2.1 Anomalies

We injected the following three anomalies in our perfor-

mance tests:

1. Memory stress: According to BlackBerry and Mozilla,

the most common anomaly occurring in the field is

related to Transient memory issues (Syer et al.

2011, 2013). Transient memory issues (memory spikes)

are large increases in memory usage over a relatively

short period of time. Therefore, we choose to inject

Transient memory anomalies as one of our experiment.

2. CPU stress: Large enterprises report that periodic CPU

saturation is one of the fundamental field problems

(Thakkar et al. 2008). CPU saturation causes anoma-

lous behavior in applications, i.e., not responding fast

enough and shutting down many of their features. CPU

anomalies can even cause system/applications to crash

or hang under heavy load. The CPU saturation can be

due to an unplanned increase in the workload volume.

It can also be due to software regression bug, i.e., due

to an updated feature of an application in which

developers forget to remove the additional executed

logic as part of their debugging activity (Nguyen et al.

2014). Even a small set of additional calculations

added to a part of the source code which is executed

frequently can produce a dramatic increase in CPU

usage.

3. Interfering workload: Interfering workload anomalies

are the major cause of performance degradation in data

centers (DC) (Delimitrou and Kozyrakis 2013). Inter-

fering workload anomalies results from competition

for resources and occur due to various reasons; as

simple as un-announced maintenance on a cluster (e.g.,

security scans), or a storage array is performing a

system operation such as replication and RAID

construction.

4.3 Discontinuities

The analyst of a data center indicated what they considered

the most common reasons for discontinuities. We injected

the three common discontinuities described below into our

performance test:

1. Workload as multiplicative factor: This to represents

increased business due to promotions, new products,

mergers & acquisitions of other smaller companies.

2. Change in transaction pattern: A change in transaction

pattern can cause discontinuities in both resource and

SLA counters such as response time, throughput and

latency. A transaction is composed of multiple events

that execute in a sequence and are called sequence

events (Jiang et al. 2008). For example, when a user

buying an item from Amazon, the user needs to select

Table 1 Baseline performance test

Parameter Value

Test duration 8 h

Number of driver (load generator) threads 100

Start request rate (load ramp-up rate) 5

Think time (time to complete and order) 30 s

Database size 100 GB

Percentage of new customers 20 %

Average number of searches per order 5

Average number of items returned in each search 3

Average number of items per order 20

Table 2 Fault injection in our experiments

No. Faults Type Experiment

1 CPU stress Anomaly 1

2 Transient memory stress Anomaly 2

3 Interfering workload Anomaly 3

4 Workload as multiplicative

factor

Discontinuity 1

5 Change in transaction pattern Discontinuity 2

6 Hardware upgrade Discontinuity 3
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the items (i.e., selection event S1) first before he can

checkout (i.e., check out event C1) Moreover, he needs

to put the selected items in the shopping cart (i.e.,

update cart event (U1) before checkout too. Similarly,

shipping (i.e., shipping event SH1) cannot be per-

formed before a successful check out to complete a

transaction T1. Each sequence event in a transaction

takes some amount of time and system resources. A

new built of an application or an enterprise software

deployed in a data center can either affect the future

response time of the transaction (i.e., improved or

deteriorate response time) or resource consumption.

3. Hardware and software upgrade: Cloud computing

and data center consolidation require periodic network

upgrades because they drive more data through the

same amount of hardware. For example, a virtualized

server holds multiple virtual machines, but still only

has a single network port. This means that the

bandwidth is shared between all of the VMs. Network

upgrades can resolve these issues by adding more data

throughput or optimizing existing infrastructure to

meet current needs. Such hardware upgrades are

typical causes of performance data discontinuity.

4.4 Experiment design

We designed six experiments to answer our research

question. We used the framework of Thakkar et al. (2008)

to automate the performance test and to ensure that the

environment remains constant throughout the experiments.

We used Thakkar framework due to its simplicity and its

previous success in practical performance testing (Thakkar

et al. 2008). Except experiment 6, which consisted of

production data obtained from the industrial partner and

experiment 5, which consisted of synthesizing data using

mathematical equations, all other performance test exper-

iments are repeated[30 times [as suggested by Georges

et al.(2007)]. Such a repetition is required to minimize the

threat that the measure of variation is not misleading and

incorrect, overcome performance counters instability dur-

ing the experiments, and to ensure consistency among our

findings. The ramp-up and ramp-down (warm up and cool

down) (Bondi 2007; Malik et al. 2010a, b, c) periods,

usually spanning over 15 min were excluded from our

analysis, as the system is usually not stable during these

periods during performance tests. We used windows

‘perfmon’ (Knop et al. 2002) tool to collect the perfor-

mance data after every 15 s (sampling interval) across all

the eight machines. The sampling interval is set to 15 s to

match the sampling interval of production performance

data. All the performance tests are 8 h long. Each perfor-

mance test has 4,242,400 observations from two hundred

and twenty performance samples of counter values. We

injected three anomalies and three discontinuities in all our

experiments except experiment 6, which consist of pro-

duction data. We now detail the settings of each experi-

ment for faults listed in Table 2.

Experiment 1 (CPU Stress & Workload as Multiplicative

Factor): For experiment 1, we inject the anomalies in DS2

application by triggering resource exhaustion. We ran a

performance test with the baseline workload listed in

Table 1. Then, we slowed down the CPU of the web server

using a CPU stress tool, known as winThrottle (Leyda and

Geiss 2010). We choose winThrottle over other CPU stress

tools because it is an open source tool and can use features in

system hardware that directly modify the CPU clock speed,

rather than using software ‘‘delay loops’’ or ‘‘HLT instruc-

tions’’ to slow down the machine. We injected discontinu-

ities by trigger a system overload, the most common cause of

discontinuity pointed out by practitioners. This experiment

keeps theworkload-mix constant and increases the execution

rate of our workload over a significant period of time to 8X,

i.e., eight times as the baseline workload configuration.

Experiment 2 (Memory stress & change in transaction

pattern): For experiment 2, we conducted performance

tests with the same workload as the baseline load listed in

Table 1, but injected a memory bug into the webserver

using a customized open-source memory stress tool called

EatMem (McCaffrey 2011). The tool allocates a random

amount of available memory at recurring intervals to

mimic a Transient Memory Spike. We also injected dis-

continuities in experiment 2 using change in transaction

pattern. Accessing I/O storage devices, such as hard drives,

are usually among the slowest part of a transaction.

Changes to I/O operation in an execution can even cause

performance regression (i.e., performance discontinuity)

(Nguyen et al. 2014). Adding log statements to execution is

a common mistake (Gunther 2000). Log statements are

usually required when implementing a new feature. There

is a tendency to leave the log statement behind in the

source code when a change is finished. We increased the

logging for the most frequently accessed source code area

in Dell DVD Store, i.e., ‘Item Selection’ execution event

thereby causing discontinuity. In experiment 2, we have to

stop the load generator several times to enable increased

levels of logging for the Dell DVD store application.

However, the ‘Perfmon’ logs the performance counters for

the entire duration of the experiment, i.e. 8 hours.

Experiment 3 (Interfering workload & hardware upgrade):

This experiment aims to trigger interfering workload

anomaly mostly due to procedural errors such as planning a

security scan at the time when peak workload is expected

or due to unconstrained activities such as RAID construc-

tion, self-cleanup activities of mail stores and storage

replications. We created an interfering background

Connecting the dots: anomaly and discontinuity detection in large-scale systems 517

123



workload anomaly mimicking a situation where the

administrator forgets to schedule an antivirus scan that

conflicts with the timing of the performance test. We

scanned one of the web server machines with an antivirus

every 50 min for 10 min over the course of 8 h to perturb

the main workload. To mimic the discontinuities arising

from maintenance activities such as hardware upgrades in

experiment 3, we first set an ‘Affinity’ (Foong et al. 2004)

to use only two CPUs for MySQL process on all three

database servers. Periodically, for each database server, we

removed the affinity rules for the MySQL process to reflect

hardware update, i.e., addition of CPUs.

Experiment 4 (Baseline performance test): We conducted

an experiment of running a performance test under constant

environment, with the baseline workload a listed in

Table 1, 8 h long, repeated over thirty times with no

anomaly or a discontinuity injection. Motivation behind

running a baseline performance test multiple times is two

folds. First, to evaluate the consistency of the proposed

methodology. Statistical techniques are highly sensitive to

minute fluctuation in data. We incorporated statistical

techniques in our methodology, which raise our concerns

that is our methodology robust enough to provide consis-

tent set of counter recommendation.

To date, there is no previous study suggesting PCA as a

stable technique to accommodate small variations in data.

However, work conducted by Ahn and Vetter (2002) sug-

gests that PCA is an appropriate technique that can deal

with large volume of correlated performance counter

(hardware) data, as compared to machine learning tech-

niques. Second, to validate the false positive recommen-

dations by the methodology. Since, the experiment

(multiple tests) is conducted in a controlled environment

and no anomaly or discontinuity is injected during the

experiment; hence, our methodology must not report an

occurrence of either an anomaly or a discontinuity.

Experiment 5 (synthetic data): It is hard to produce cyclic

workload in a lab environment, i.e., performance counter

values that respond in a continuous wavelength pattern

(i.e., period formation of trough and crest) to cyclic

workload stimuli. For example, Microsoft exchange server,

running MMB3 workload (Stanford 2003), results in CPU

and DISK IOPS to follow wavelength patters as shown in

Fig. 1c. Mathematical formulas in excel are used to gen-

erate cyclic performance counter values (e.g., CPU uti-

lization with respect to the transaction volume) and

manufactured discontinuities (using statistical equations)

were used to cause irregularities in the data.

Experiment 6 (production logs): This experiment was

conducted on the production data. The analyst of a data

center gave us performance logs spanning over 7 years

without revealing the discontinuities. In particular, analysts

were interested to Measure the Effectiveness of Our

Approach to know how our approach performs on two of

the specific clients’ data, which they had already verified

for the presence of discontinuities.

4.5 Measuring the effectiveness of the proposed

methodology

To evaluate the effectiveness of our approaches, we use the

following measures: Precision, Recall and F-Measure.

Precision is the ratio between correctly identified discon-

tinuities and predicted discontinuities in a performance

data. Recall is defined as the ratio between the number of

correctly identified discontinuities and the number of actual

discontinuities present in performance data. F-measure is

defined as a harmonic means of precision and recall

(Limbrunner et al. 2000) F�Measure ¼ ðaþ 1Þ�
Precision � Recall=ða � Precision þ RecallÞ. The value

of alpha (a) ranges between 0 and infinity to give varying

weights for recall and precision. For example, in this paper

to indicate that recall is as important as precision, alpha has

a value of 1.0. For All our experiments (1–3), we divided

the performance test into equal time intervals from t1 to t10

as shown in Fig. 7. For each performance experiment (1–3)

t1 t2 t3          t4          t5          t6          t7         t8         t9         t10

t1          t2           t3 t4          t5          t6          t7         t8         t9         t10

t1         t2 t3          t4          t5          t6          t7         t8         t9         t10

CPU 

Disk

Latency

Predicted (P) 
Discontinuities 

Occurred (O) 
Discontinuities 

=

Fig. 7 Illustration of our

effectiveness measure

518 H. Malik et al.

123



corresponding anomaly is injected during interval t1, t2, t8,

t9 and t10 and discontinuities are injected within time

interval t3, t4, t5, t6 and t7. We also logged the exact time of

all the fault injections in a test. We now use Fig. 7 as an

example to explain how we measure the precision and recall

of our proposed approach. An ideal approach should only

report the intervals during which the discontinuities

occurred O = {t3, t4, t5, t6, t7}. We applied our approach on

the three performance counters CPU, Disk, and Latency

obtained from the experiment performed and it collectively

predicted (among unique time intervals shown in red) dis-

continuities P = {t1, t2, t3, t4}. Based on these definitions

we define: Recall = |P \ O|/|O| and Precision = |P \ O|/

|P|. Therefore, in the above example, Recall = 2/5 = 0.4,

Precision = 2/4 = 0.5, and F-Measure = 0.44.

4.6 Case study results

We now report our findings. Table 3 shows, under varying

effect size, the effectiveness of our proposed approach. The

results are listed using the definition of our performance

measure (i.e., Precision, Recall and F-measure) for all the

case study experiments. For the first three experiments, the

values reported in Table 3 are the averages of thirty runs per

experiment. The ‘Total’ counters size represents the number

of performance counters harvested from the system-under-

test. The ‘selected’ counter refers to number of performance

counters selected among the pool of Topk counters recom-

mended by our PCA approach that have higher likelihood of

revealing discontinuities (if any occurred). The main con-

straint on the number of Topk counters come from practi-

cality. The performance analysts of our industrial partner

advised us that they consider 20 performance counters as

the maximum that are manageable. Any increase in the

number of performance counters beyond 20 negatively

affects the human capability to effectively examine and

confirm the underlying discontinuities; or to understand the

root-cause of an observed discontinuity, so as to adjust the

parameters of forecast models accordingly. Overall, our

approach has a higher average recall in comparison to its

precision. For experiments 1–5 (excluding experiment 4),

using large effect size, the approach performance is ideal

because (a) we had limited types of discontinuities to inject,

and (b) discontinuities variations (i.e., abrupt change (jump)

in counter values) are limited as compared to what is

observed in the production environment. In experiment 5

(production data), our approach performed best with an

effect size set to ‘Medium’. The approach is very sensitive

to the variation in the performance data; therefore the effi-

ciency of our approach suffers when effect size (i.e., sen-

sitivity) is set to ‘trivial’ and our approach achieved the

minimum precision of 0.50. We investigated the rationale

behind the poor performance of the approach for ‘Trivial

effect size’. Under extreme load such as in experiment 1,

where CPU anomaly and 8X workload discontinuity is

injected, it takes a long time for CPU counter to stabilize

and return to its normal state, perturbing the equilibrium of

counter’s distribution beyond the next injected fault.

Comparing the distribution of ‘% CPU Utilization’ before

and after the transition period of an anomaly (i.e., injected

fault), the technique picked up even this minute variation

(Cohen0sd� 0:2) due to carryover effect and marked it as a

disconnect.

Similarly, for experiment 1, we also found that under

extreme CPU stress, the database server refused connection

from all of the four webservers in the system under test.

This is the default behaviour of MYSQL server under

extreme stress. The webservers facing heavy workload

volume (i.e., from load generators), (a) started appending

all the intermediate transaction to the disk on priority basis,

so that the transaction are not lost and are routed to the

database server as soon as the connection is established

with it. This caused the values of ‘‘Disk-IOPS’’ to rise

considerably higher and (b) reattempted to establish

connection with MYSQL server every 10 s, causing

higher than normal variation in the value of the ‘NIC_-

controller_packet sent’ counter. Moreover, due to the

MYSQL server under stress, the transaction response time

Table 3 The effectiveness of the proposed discontinuity identification approach

Exp id Cohen’s d effect size Counter size

Trivial Small Medium Large

Prec Recall F-Mes Prec Recall F-Mes Prec Recall F-Mes Prec Recall F-Mes Selected Total

1 0.50 0.80 0.68 0.66 1 0.80 1.00 1.00 1.00 1.00 1.00 1.00 20 220

2 0.60 0.90 0.72 0.8 1 0.88 1.00 1.00 1.00 1.00 1.00 1.00 20 220

3 0.80 0.80 0.80 0.91 0.88 0.95 0.95 0.88 0.91 1.00 1.00 1.00 20 220

4 0.92 0.97 0.93 0.92 0.97 0.94 0.95 0.96 0.95 0.98 0.97 0.97 20 220

5 0.70 0.90 0.78 1.00 0.95 0.97 1.00 1.00 1.00 1.00 1.00 1.00 15 30

6 0.50 0.60 0.54 0.70 0.69 0.69 0.92 0.92 0.92 0.92 0.87 0.90 20 1256

Average 0.62 0.8 0.704 0.814 0.904 0.85 0.97 0.96 0.96 0.98 0.97 0.98 - -
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also increased. All these unexpected variations in the per-

formance counter data are perceived as discontinuities by

our proposed approach when sensitivity parameter is set

too low, i.e. ‘Trivial’. Our approach performed well when

the effect size is set to higher levels. This is because being

the carry-over effect of anomalies, and minute external

variation such as linear growth in counter value or its value

drift over time is filtered.

For the experiment 4, recommendations of our

methodology were consistent (no traces of anomaly and

discontinuity) across all the repeated baseline performance

tests except for one, where the anomaly detection tech-

nique detected three anomalies, across three different

counters, with high cost values, shown in Fig. 6. Upon a

careful manual inspection of the counters values, we con-

cluded that it was a problematic performance test run. The

‘perfmon’ tool recorded an instance of negative value for

the ‘% CPU Utilization’’ counter and multiple instance of

negative values for ‘Memory Cache Bytes’ and ‘Avg Disk

Writs/Sec’, thereby affecting the precision of the proposed

methodology, listed in Table 3. Nevertheless, we are not

sure of what made perform tool record instances of coun-

ters with negative values.

All the identified discontinuities (especially for the logs

of two customers) were verified by practitioners. Our

approach performed up to the satisfaction of the practi-

tioners. For the experiment 6, with effect size set to

‘Small’, the approach was able to identify most of the

discontinuities with precision and recall of 0.70 and 0.69.

With effect size set to ‘Medium’, the approach performed

better that their expectation, i.e., achieved with excellent

balance of precision and recall (i.e., 0.92, 0.92). With effect

size set to ‘Large’, the recall of the approach suffered no

change in its precision.

5 Related work

Detecting anomalies in an enterprise system is not a new

problem. However, there is little work done in identifying

and diagnosing anomalies in large scales systems using

such performance data as, console logs, performance

counter logs and executions logs. Most of the work in the

literature is divided into two major dimensions, i.e., pre and

post deployment anomaly detection.

5.1 Pre-deployment anomaly detection

in large-scale system

The focus work along this dimension is to help analysts

identify and diagnose anomalies in the system early, before

they become critical field problems. Closest known work

relating to ours is the work done by Foo (2011; 45-2010)

and Naguyen et al. (2011, 2014). Both use performance

counters to automate the analysis of performance test an

automatically identify performance anomalies in the sys-

tem. Foo et al. (2011, 2010) calculate performance signa-

tures from previous executions and use them as a baseline

to compare against performance signatures of new execu-

tions. This approach is close to regression testing as it

validates if anomalies are introduced into newer software

versions. They, however, only do comparative analysis,

which only provides a Yes/No answer on performance

anomalies. In contrast, our approach can pinpoint the time

duration at which the anomaly and discontinuity occurs and

for how long it prevails, i.e., its transition period. Nguyen

et al. (2011, 2014) used a quality control technique called

control charts to flag the anomalies in the performance

counters using upper and lower bound limits. Their tech-

nique requires deep understanding of the domain to create

control limit of performance counters. The variation of the

counter values within the limit is considered as normal

variation. In contrast, our approach use effect size as a

tunable threshold to identify discontinuities, and does not

require an analysts to have explicit knowledge about the

acceptable limits of all the performance counters values.

Unlike our work, Jiang (2010) relies on execution logs that

capture detailed information. However, such logs are

vendor and application specific. This means, that different

subsystems in a large-scale system (e.g. web servers,

databases, and mail servers) produce a variety of execution

logs, each with different levels of information and formats.

Whereas, the performance counters data, provide a greater

level of unification across subsystems and systems. Malik

et al. (2010a, b, c, 2013) have used principal component

analysis (PCA) to generate performance signatures for each

component using performance counters captured during

load test. They assess the pair-wise correlations between

the performance signatures of a performance test and a

baseline test to identify performance anomalies and devi-

ations. However, it’s hard to find baselines in rapidly

evolving large-scale systems.

5.2 Post-deployment anomaly detection

in large-scale system

The work in this dimension aim to help analyst identify

anomalies in production environment, i.e., once a system or

and enterprise application is deployed. Syers et al.

(2011, 2013) proposed an approach to identify performance

anomalies and deviation in thread pool using performance

counters. Their approach is limited to the detection mem-

ory related performance anomalies in enterprise systems

(e.g., memory leaks, memory spikes and memory blots).

Attariyan et al. (2012) proposed a performance summa-

rization approach for identifying root causes of
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performance anomalies based on human errors, such as

misconfigurations. They used dynamic binary instrumen-

tation to monitor an application as it executes instead of

execution logs or performance counters. However, their

techniques only focus on misconfigurations and do not help

to find anomalies (Gunasekaran et al. 2010; Cherkasova

et al. 2009; Cretu-Ciocârlie et al. 2008). Finally, there are

other approaches (Foo 2011, Malik et al. 2010a, b, c) that

use annotated software models to detect performance

anomalies (Syer et al. 2011, 2013). These approaches,

however, use software model simulations and not real

production software.

6 Conclusion and future work

The growth in cloud environments and virtualization has

increased the need for the forecasting techniques to better

satisfy the scalability, elasticity, and cost-effectiveness

requirements of cloud environments. The accuracy of a

forecasting technique depends of the merit of input data.

Analysts spend considerable preparing the data in order to

conduct a forecast. We propose a technique that helps

analyst automatically identify discontinuities in the per-

formance data. Discontinuity is a change in a time-series

pattern that persists (but does not reoccur) since the mea-

surement taken before the discontinuity may be irrelevant.

Detecting discontinuities in performance data of a data

center improves forecasts. If an analyst knows a disconti-

nuity has occurred, the analyst may want to ignore the early

data and base the forecast on the measurements taken after

the discontinuity. Moreover, detecting a discontinuity

provide analysts a reference point to retrain their fore-

casting models and make necessary adjustments. We show

how simple statistical techniques can be used to identify

discontinuities in large performance data. A large case

study on an industrial system as well as a benchmark open

source system provides empirical evidence of the ability of

our approaches to uncover the discontinuities in perfor-

mance data. In future, we will attempt to study and cate-

gorize discontinuities with that of the corresponding

workloads.
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